http://www.yassl.com
mailto:info@yassl.com
phone: +1 206 369 4800

CTaoCrypt Usage Reference

CTaoCrypt is the cryptography library primarily used by CyaSSL. It is optimized for
speed, small footprint, and portability. CyaSSL can also interchange with other
cryptography libraries as required.

Types used in the examples:

typedef unsigned char byte;
typedef unsigned int word32;

Hash Functions

MD5

To use MD5 include the MD5 header "md5.h". The structure to use is Md5 which is a
typedef. Before using the hash initialization must be done with the InitMd5() call. Use
Md5Update() to update the hash and Md5Final() to retrieve the final hash:



byte md5sum[MD5 DIGEST SIZE];
byte buffer[1024];
// f£ill buffer with data to hash

Md5 md5;
InitMd>5 (&md5) ;

Md5Update (&md5, buffer, sizeof (buffer)); // can be called again
and again
Md5Final (&md5, md5sum) ;

md5sum now contains the digest of the hashed data in buffer.
SHA

To use SHA include the SHA header "sha.h". The structure to use is Sha which is a
typedef. Before using the hash initialization must be done with the InitSha() call. Use
ShaUpdate() to update the hash and ShaFinal() to retrieve the final hash:

byte shaSum[SHA DIGEST SIZE];
byte buffer[1024];
// fi11ll buffer with data to hash

Sha sha;
InitSha (&sha) ;

ShaUpdate (&sha, buffer, sizeof (buffer)); // can be called
again and again

ShaFinal (&sha, shaSum);

shaSum now contains the digest of the hashed data in buffer.

Other Hashes

Likewise, the same procedures can be used with MD4 "m4.h" (which is outdated and
considered broken) and SHA-256 "sha256.h".



Message Digests

CTaoCrypt currently provides HMAC for message digest needs. The structure Hmac is
found in the header "hmac.h". With HMAC initialization is done with HmacSetKey(). 3
different types are supported with HMAC; MD5, SHA, and SHA-256. Here's an example
with SHA-256.

Hmac hmac;

byte key[24]; // fill key with keying material
byte buferr[2048]; // fill buffer with data to digest
byte hmacDigest [SHA256 DIGEST SIZE];

HmacSetKey (&hmac, SHA256, key, sizeof (key)):
HmacUpdate (&hmac, buffer, sizeof (buffer));
HmacFinal (&hmac, hmacDigest);

hmacDigest now contains the digest of the hashed data in buffer.

Block Ciphers

DES and 3DES

CTaoCrypt provides support for DES and 3DES (Des3 since 3 is an invalid leading C
identifier). To use these include the header "des.h". The structures you can use are
Des and Des3. Initialization is done through Des_SetKey() or Des3_SetKey(). CBC
encryption/decryption is provided through Des_CbcEnrypt() | Des_CbcDecrypt() and
Des3_CbcEncrypt() | Des_CbcDecrypt(). Des has a key size of 8 bytes (24 for 3DES)
and the block size is 8 bytes, so only pass increments of 8 bytes to encrypt/decrypt
functions. In your data isn't in a block size increment you'll need to add padding to
make sure it is. Each SetKey() also takes an IV, an initialization vector that is the same
size as the key size. Usage is usually like the following:

Des3 enc;

Des3 dec;

const byte key[] = { // some 24 byte key };

const byte iv[] = { // some 24 byte iv };

byte plain[24]; // an increment of 8, fill with data

byte cipher[24];



// encrypt
Des3 SetKey(&enc, key, 1iv, DES ENCRYPTION) ;
Des3 CbcEncrypt (&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt
Des3 SetKey(&dec, key, 1iv, DES DECRYPTION) ;
Des3 CbcDecrypt (&dec, plain, cipher, sizeof (cipher));

plain now contains the original plaintext from the cipher text.

AES

CTaoCrypt also provides support for AES. Key sizes are 16 bytes (128 bits), 24 bytes
(192 bits), or 32 bytes (256 bits). CBC mode is supported for encrypt/decrypt. Please
include the header "aes.h" to use AES. AES has a block size of 16 bytes and the IV
should also be 16 bytes. The functions are exactly the same as DES and usage usually
goes:

Aes enc;

Aes dec;

const byte key[] = { // some 24 byte key };

const byte iv[] = { // some 16 byte iv };

byte plain[32]; // an increment of 16, fill with data

byte cipher[32];

// encrypt

AesSetKey (&enc, key, sizeof(key), iv, AES ENCRYPTION) ;
AesCbcEncrypt (&enc, cipher, plain, sizeof (plain));
cipher now contains the cipher text from the plain text.

// decrypt

AesSetKey (&dec, key, sizeof(key), iv, AES DECRYPTION) ;

AesCbcDecrypt (&dec, plain, cipher, sizeof (cipher));

plain now contains the original plaintext from the cipher text.



Stream Ciphers

ARC4

The most common stream cipher used on the internet is ARC4 and CTaoCrypt supports
it through the header "arc.h". Usage is simpler than block ciphers because there is no
block size and the key length can be any length. Use it like this:

Arcd enc;
Arc4 dec;

const byte key[] = { // some key any length};

byte plain[27]; // no size restriction, fill with data
byte cipher[27];

// encrypt
ArcdSetKey (&enc, key, sizeof (key));
Arc4Process (&enc, cipher, plain, sizeof (plain));

cipher now contains the cipher text from the plain text.

// decrypt
Arcd4SetKey (&dec, key, sizeof (key));
Arc4Process (&dec, plain, cipher, sizeof (cipher));

plain now contains the original plaintext from the cipher text.

RABBIT

A newer stream cipher gaining popularity is RABBIT and you can use it with CTaoCrypt
by including the header "rabbit.h". RABBIT is very fast compared to ARC4 but has key
constraints of 16 bytes (128 bits) and an optional IV of 8 bytes (64 bits). Otherwise
usage is exactly like ARC4:

Rabbit enc;
Rabbit dec;

const byte key[] = { // some key 16 bytes};
const byte iv[] = { // some iv 8 bytes };

byte plain[27]; // no size restriction, fill with data
byte cipher[27];



// encrypt
RabbitSetKey (&enc, key, 1iv); // iv can be a NULL pointer
RabbitProcess (&enc, cipher, plain, sizeof (plain));

cipher now contains the cipher text from the plain text.
// decrypt
RabbitSetKey (&dec, key, 1iv);

RabbitProcess (&dec, plain, cipher, sizeof (cipher));

plain now contains the original plaintext from the cipher text.

HC-128

Another new stream cipher in current use is HC-128 which is even faster than RABBIT.
To use it with CTaoCrypt please include the header "hc128.h". HC-128 also uses 16
bytes keys (128 bits) but uses 16 bytes vs (128 bits) unlike RABBIT.

HC128 enc;
HC128 dec;

const byte key[] = { // some key 16 bytes};
const byte iv[] = { // some iv 16 bytes };

byte plain[37]; // no size restriction, fill with data
byte cipher[37];

// encrypt

Hcl28 SetKey(&enc, key, 1iv); // 1v can be a NULL pointer
Hcl28 Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

Hcl28 SetKey (&dec, key, 1v);

Hcl28 Process (&dec, plain, cipher, sizeof (cipher));

plain now contains the original plaintext from the cipher text.



Public Key Cryptography
RSA

CTaoCrypt provides support for RSA through the header "rsa.h". There are two types
of RSA keys, public and private. A public key allows anyone to encrypt something that
only the holder of the private key can decrypt. It also allows the private key holder to
sign something and anyone with a public key can verify that only the private key holder
actually signed it. Usage is usually like the following:

RsaKey rsaPublicKey;

byte publicKeyBuffer[] = { // holds the raw data from the key,
maybe from a file like RsaPublicKey.der };
word32 idx = 0; // where to start reading

into the buffer

RsaPublicKeyDecode (publicKeyBuffer, &idx, &rsaPublicKey,
sizeof (publicKeyBuffer));

byte in[] = { // plain text to encrypt };
byte out[128];
RNG rng;

InitRng (&rng) ;

word32 outLen = RsaPublicEncrypt(in, sizeof (in), out,
sizeof (out), &rsaPublicKey, &rng);

Now out holds the cipher text from the plain text in. RsaPublicEncrypt() will return the
length in bytes written to out or a negative number in case of an error.
RsaPublicEncrypt() needs an RNG (Random Number Generator) for the padding used
by the encryptor and it must be initialized before it can be used. To make sure that the
output buffer is large enough to pass you can first call RsaEncryptSize() which will
return the number of bytes that a successful call to RsaPublicEnrypt() will write.

In the event of an error, a negative return from RsaPublicEnrypt(), or
RsaPublicKeyDecode() for that matter, you can call CTaoCryptErrorString() to get a
string describing the error that occurred.

void CTaoCryptErrorString(int error, char* buffer);

Make sure that buffer is at least MAX_ERROR_SZ bytes (80).



Now to decrypt out:
RsaKey rsaPrivateKey;

byte privateKeyBuffer[] = { // hold the raw data from the key,
maybe from a file like RsaPrivateKey.der };

word32 idx = 0; // where to start reading
into the buffer

RsaPrivateKeyDecode (privateKeyBuffer, &idx, &rsaPrivateKey,
sizeof (privateKeyBuffer));

byte plain[128];

word32 plainSz = RsaPrivateDecrypt (out, outLen, plain,
sizeof (plain), &rsaPrivateKey):;

Now plain will hold plainSz bytes or an error code.

For complete examples of each type in CTaoCrypt please see the file ctaocrypt/test.c.

Coypright (C) 2010 Sawtooth Consulting Ltd. All rights reserved.



